Issue 30, 2020

Guest-responsive polaritons in a porous framework: chromophoric sponges in optical QED cavities

Abstract

Introducing porous material into optical cavities is a critical step toward the utilization of quantum-electrodynamical (QED) effects for advanced technologies, e.g. in the context of sensing. We demonstrate that crystalline, porous metal–organic frameworks (MOFs) are well suited for the fabrication of optical cavities. In going beyond functionalities offered by other materials, they allow for the reversible loading and release of guest species into and out of optical resonators. For an all-metal mirror-based Fabry–Perot cavity we yield strong coupling (∼21% Rabi splitting). This value is remarkably large, considering that the high porosity of the framework reduces the density of optically active moieties relative to the corresponding bulk structure by ∼60%. Such a strong response of a porous chromophoric scaffold could only be realized by employing silicon-phthalocyanine (SiPc) dyes designed to undergo strong J-aggregation when assembled into a MOF. Integration of the SiPc MOF as active component into the optical microcavity was realized by employing a layer-by-layer method. The new functionality opens up the possibility to reversibly and continuously tune QED devices and to use them as optical sensors.

Graphical abstract: Guest-responsive polaritons in a porous framework: chromophoric sponges in optical QED cavities

Associated articles

Supplementary files

Article information

Article type
Edge Article
Submitted
29 Apr 2020
Accepted
11 Jul 2020
First published
13 Jul 2020
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2020,11, 7972-7978

Guest-responsive polaritons in a porous framework: chromophoric sponges in optical QED cavities

R. Haldar, Z. Fu, R. Joseph, D. Herrero, L. Martín-Gomis, B. S. Richards, Ian. A. Howard, A. Sastre-Santos and C. Wöll, Chem. Sci., 2020, 11, 7972 DOI: 10.1039/D0SC02436H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements