Issue 41, 2020

Nanoscale battery cathode materials induce DNA damage in bacteria

Abstract

The increasing use of nanoscale lithium nickel manganese cobalt oxide (LixNiyMnzCo1−yzO2, NMC) as a cathode material in lithium-ion batteries poses risk to the environment. Learning toxicity mechanisms on molecular levels is critical to promote proactive risk assessment of these complex nanomaterials and inform their sustainable development. We focused on DNA damage as a toxicity mechanism and profiled in depth chemical and biological changes linked to DNA damage in two environmentally relevant bacteria upon nano-NMC exposure. DNA damage occurred in both bacteria, characterized by double-strand breakage and increased levels of many putative chemical modifications on bacterial DNA bases related to direct oxidative stress and lipid peroxidation, measured by cutting-edge DNA adductomic techniques. Chemical probes indicated elevated intracellular reactive oxygen species and transition metal ions, in agreement with DNA adductomics and gene expression analysis. By integrating multi-dimensional datasets from chemical and biological measurements, we present rich mechanistic insights on nano-NMC-induced DNA damage in bacteria, providing targets for biomarkers in the risk assessment of reactive materials that may be extrapolated to other nano–bio interactions.

Graphical abstract: Nanoscale battery cathode materials induce DNA damage in bacteria

Supplementary files

Article information

Article type
Edge Article
Submitted
27 May 2020
Accepted
19 Sep 2020
First published
21 Sep 2020
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2020,11, 11244-11258

Nanoscale battery cathode materials induce DNA damage in bacteria

T. A. Qiu, V. Guidolin, K. N. L. Hoang, T. Pho, A. Carra', P. W. Villalta, J. He, X. Yao, R. J. Hamers, S. Balbo, Z. V. Feng and C. L. Haynes, Chem. Sci., 2020, 11, 11244 DOI: 10.1039/D0SC02987D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements