Issue 41, 2020

Reversible guest-induced gate-opening with multiplex spin crossover responses in two-dimensional Hofmann clathrates

Abstract

Spin crossover (SCO) compounds are very attractive types of switchable materials due to their potential applications in memory devices, actuators or chemical sensors. Rational chemical tailoring of these switchable compounds is key for achieving new functionalities in synergy with the spin state change. However, the lack of precise structural information required to understand the chemical principles that control the SCO response with external stimuli may eventually hinder further development of spin switching-based applications. In this work, the functionalization with an amine group in the two-dimensional (2D) SCO compound {Fe(5-NH2Pym)2[MII(CN)4]} (1M, 5-NH2Pym = 5-aminopyrimidine, MII = Pt (1Pt), Pd (1Pd)) confers versatile host–guest chemistry and structural flexibility to the framework primarily driven by the generation of extensive H-bond interactions. Solvent free 1M species reversibly adsorb small protic molecules such as water, methanol or ethanol yielding the 1M·H2O, 1M·0.5MeOH or 1M·xEtOH (x = 0.25–0.40) solvated derivatives. Our results demonstrate that the reversible structural rearrangements accompanying these adsorption/desorption processes (1M1M·guest) follow a gate-opening mechanism whose kinetics depend not only on the nature of the guest molecule and that of the host framework (1Pt or 1Pd) but also on their reciprocal interactions. In addition, a predictable and reversible guest-induced SCO modulation has been observed and accurately correlated with the associated crystallographic transformations monitored in detail by single crystal X-ray diffraction.

Graphical abstract: Reversible guest-induced gate-opening with multiplex spin crossover responses in two-dimensional Hofmann clathrates

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Aug 2020
Accepted
21 Sep 2020
First published
22 Sep 2020
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2020,11, 11224-11234

Reversible guest-induced gate-opening with multiplex spin crossover responses in two-dimensional Hofmann clathrates

R. Turo-Cortés, C. Bartual-Murgui, J. Castells-Gil, M. C. Muñoz, C. Martí-Gastaldo and J. A. Real, Chem. Sci., 2020, 11, 11224 DOI: 10.1039/D0SC04246C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements