Issue 44, 2020

Visible light driven generation and alkyne insertion reactions of stable bis-cyclometalated Pt(iv) hydrides

Abstract

Hydride complexes resulting from the oxidative addition of C–H bonds are intermediates in hydrocarbon activation and functionalization reactions. The discovery of metal systems that enable their direct formation through photoexcitation with visible light could lead to advantageous synthetic methodologies. In this study, easily accessible dimers [Pt2(μ-Cl)2(C^N)2] (C^N = cyclometalated 2-arylpyridine) are demonstrated as a very convenient source of Pt(C^N) subunits, which promote photooxidative C–H addition reactions with different 2-arylpyridines (N′^C′H) upon irradiation with blue light. The resulting [PtH(Cl)(C^N)(C′^N′)] complexes are the first isolable Pt(IV) hydrides arising from a cyclometalation reaction. A transcyclometalation process involving three photochemical steps is elucidated, which occurs when the C^N ligand is a monocyclometalated 2,6-diarylpyridine, and a detailed analysis of the photoreactivity associated with the Pt(C^N) moiety is provided. Alkyne insertions into the Pt–H bond of a photogenerated Pt(IV) hydride are also reported as a demonstration of the ability of this class of compounds to undergo subsequent organometallic reactions.

Graphical abstract: Visible light driven generation and alkyne insertion reactions of stable bis-cyclometalated Pt(iv) hydrides

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Sep 2020
Accepted
13 Oct 2020
First published
13 Oct 2020
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2020,11, 12095-12102

Visible light driven generation and alkyne insertion reactions of stable bis-cyclometalated Pt(IV) hydrides

D. Poveda, Á. Vivancos, D. Bautista and P. González-Herrero, Chem. Sci., 2020, 11, 12095 DOI: 10.1039/D0SC04879H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements