Issue 23, 2020

A simple approach to prepare self-assembled, nacre-inspired clay/polymer nanocomposites

Abstract

Inspired by the relationship between the well-ordered architecture of aragonite crystals and biopolymers found in natural nacre, we present a facile strategy to construct large-scale organic/inorganic nacre-mimetics with hierarchical structure via a water-evaporation driven self-assembly process. We connect LAPONITE®-nanoclay platelets with each other using carboxymethyl cellulose, a cellulose derivative, thus creating thin, flexible films with a local brick-and-mortar architecture. The dried films show a pronounced resistance against tensile forces allowing for stronger thin films than nacre. In terms of functionalities, we report excellent glass-like transparency along with exceptional shape-persistent flame shielding. We also demonstrate that through metal ion-coordination we can further strengthen the interactions between the polymers and the nanoclays, and thus enhanced mechanical, and thermal properties as well as resistance against swelling and dissolution in aqueous environments. We believe that our simple pathway to fabricate such versatile polymer/clay nanocomposites can open avenues for inexpensive production of environmentally friendly, biomimetic materials in aerospace, wearable electrical devices, and in the food packaging industry.

Graphical abstract: A simple approach to prepare self-assembled, nacre-inspired clay/polymer nanocomposites

Article information

Article type
Paper
Submitted
06 Aug 2019
Accepted
26 May 2020
First published
01 Jun 2020
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2020,16, 5497-5505

A simple approach to prepare self-assembled, nacre-inspired clay/polymer nanocomposites

P. Xu, T. Erdem and E. Eiser, Soft Matter, 2020, 16, 5497 DOI: 10.1039/C9SM01585J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements