Issue 4, 2020

The peeling behavior of compliant cylindrical shells in adhesive contact with a planar rigid substrate

Abstract

In this work, we study the peeling of a cylindrical shell attached to a smooth rigid substrate and subjected to a vertical force. A generalized peeling model based on the energy-variational approach is presented, and its numerical solutions characterize the cross-section profile and peeling force. The interfacial interactions are represented by the Lennard-Jones potential. Molecular dynamics simulations are performed for the peeling system with single-walled carbon nanotubes and gold substrates, and simulation results show good agreement with the theoretical predictions. We show that there are three stages (stable peeling stage, line-contact stage, and pull-off stage) in the entire peeling process. A spring-like behavior is observed in the stable peeling stage. With the peeling displacement increasing, the second stage has a marked feature of line contact and the peeling force arrives at a peak pull-off force. Furthermore, we show that the pull-off force strongly depends on the flexural stiffness of cylindrical shell and two Lennard-Jones parameters, but is independent of the initial radius of cylindrical shell. Our findings may help to reveal the interactions between thin-walled nanotubes and substrates.

Graphical abstract: The peeling behavior of compliant cylindrical shells in adhesive contact with a planar rigid substrate

Article information

Article type
Paper
Submitted
15 Sep 2019
Accepted
12 Dec 2019
First published
13 Dec 2019

Soft Matter, 2020,16, 1011-1020

The peeling behavior of compliant cylindrical shells in adhesive contact with a planar rigid substrate

X. Yuan and Y. Wang, Soft Matter, 2020, 16, 1011 DOI: 10.1039/C9SM01863H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements