Multi-scale modeling of the polymer–filler interaction
Abstract
We report mesoscopic simulations of the interaction between a silica nanoparticle and cis-1,4-polybutadiene chains with realistic coarse-(CG) grained models. The CG models are obtained with a bottom-up Bayesian method based on trajectory matching of atomistic configurations of the system. We then investigate the structural properties of the interfacial region as a function of the grafting density and polymer chain length. We take advantage of the realistic CG models to explore the dynamics of the nanoparticle over a period of 10 microseconds. We show that the dynamics of the nanoparticle is affected by the grafting density and the polymer chain length of the grafted chains.