Issue 12, 2020

Response of metal-coordination-based polyelectrolyte complex micelles to added ligands and metals

Abstract

Polyelectrolyte complex based micelles have attracted significant attention due to their potential regarding bio-applications. Although the morphology and functions have been studied extensively, dynamic properties, particularly component exchange with other surrounding molecules, have remained elusive to date. Here, we show how micelles based on metal–ligand coordination complex coacervate-core micelles (M-C3Ms) respond to addition of extra ligand and metal ions. The micelles are prepared from a polycationic-neutral diblock copolymer and an anionic coordination polyelectrolyte, which is obtained by coordination between metal ions (lanthanides Ln3+ and Zn2+) and a bis-ligand (LEO) containing two dipicolinic acid (DPA) groups connected by a tetra-ethylene oxide spacer (4EO). Our findings show that the bis-ligand LEO is essential for the growth of coordination polymers and consequently the formation of micelles, leading to equilibrium structures with the same micellar composition and structure independent of the order of mixing. In other words, adding single DPA has no effect on the formed M-C3Ms. As for metal exchange, we find that added Zn2+ can replace some of the Ln3+ from Ln-C3Ms, leading to a hybrid coordination structure with both Ln3+ and Zn2+. We find that component exchange occurs in these coordination polyelectrolyte micelles, but it is more favorable in the direction of replacing the weak binding components with strong ones. Hence, the designed M-C3Ms based on the strong binding components, such as Ln-C3Ms, shall be relatively stable in biological surroundings, paving the way for the application of such particles as bio-imaging probes.

Graphical abstract: Response of metal-coordination-based polyelectrolyte complex micelles to added ligands and metals

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2019
Accepted
24 Feb 2020
First published
24 Feb 2020

Soft Matter, 2020,16, 2953-2960

Response of metal-coordination-based polyelectrolyte complex micelles to added ligands and metals

J. Wang, W. Guan, T. Tan, V. Saggiomo, M. A. Cohen Stuart and A. H. Velders, Soft Matter, 2020, 16, 2953 DOI: 10.1039/C9SM02386K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements