Insight into the unwrapping of the dinucleosome
Abstract
Dynamics of nucleosomes, the building blocks of chromatin, has crucial effects on the expression, replication and repair of genomes in eukaryotes. Beside the constant movements of nucleosomes by thermal fluctuations, ATP-dependent chromatin remodelling complexes cause their active displacements. Here we propose a theoretical analysis of dinucleosome wrapping and unwrapping dynamics in the presence of an external force. We explore the energy landscape and configurations of a dinucleosome in different unwrapped states. Moreover, using a dynamical Monte-Carlo simulation algorithm, we demonstrate the dynamical features of the system such as the unwrapping force for partial and full wrapping processes. Furthermore, we show that in the short length of linker DNA (∼10–90 bp), asymmetric unwrapping occurs. These findings could shed some light on chromatin dynamics and gene accessibility.