Issue 19, 2020

A theoretical phase diagram for an active nematic on a spherical surface

Abstract

Systems combining rod-shaped objects with self-generated motion such as suspensions of microtubules or growing bacterial colonies are commonly modeled as active nematics – nematic liquid crystals with an additional active stress term. Confining a 2D active nematic to the surface of a sphere generates novel behaviour as the four +1/2 nematic defects which are produced by the spherical geometry move round each other in an intricate dance. Here, these defects are modeled as point particles experiencing elastic forces from defect position and orientation, and self-propulsion due to activity. This model exhibits four qualitatively distinct types of trajectory state: two which are consistent with previous experimental and simulated trajectories; and two others, which are apparently novel and in regions of parameter space that may not yet have been explored. This work also explains a discrepancy between some previous point-particle models and the trajectories seen in experiments and simulations: this was due to a failure to fully account for the spherical geometry in the point-particle models.

Graphical abstract: A theoretical phase diagram for an active nematic on a spherical surface

Article information

Article type
Paper
Submitted
29 Jan 2020
Accepted
26 Apr 2020
First published
11 May 2020
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2020,16, 4682-4691

A theoretical phase diagram for an active nematic on a spherical surface

A. T. Brown, Soft Matter, 2020, 16, 4682 DOI: 10.1039/D0SM00166J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements