Issue 19, 2020

On the pressure dependence of the thermodynamical scaling exponent γ

Abstract

Since its initial discovery more than fifteen years ago, the thermodynamical scaling of the dynamics of supercooled liquids has been used to provide many new important insights in the physics of liquids, particularly on the link between dynamics and intermolecular potential. A question that has long been discussed is whether the scaling exponent γS is a constant or does it depends on pressure. An alternative definition of the scaling parameter, γI = ∂ ln T/∂ ln ρ|X has been presented in the literature, and has been erroneously considered equivalent to γS. Here we offer a simple method to determine the pressure dependence of γI using only the pressure dependence of the glass transition and the equation of state. Using this new method we find that for the six nonassociated liquids investigated, γI always decreases with increasing pressure. Importantly in all cases the value of γI remains always larger than 4. Liquids having γI closer to 4 at low pressure show a smaller change in γI with pressure. We argue that this result has very important consequences for the experimental determination of the functional form of the repulsive part of the potential in liquids. Comparing the pressure and temperature dependence of γS and γI we find, contrary to what has been assumed in the literature to date, that these two parameters are not equivalent and have very different pressure and temperature dependences.

Graphical abstract: On the pressure dependence of the thermodynamical scaling exponent γ

Article information

Article type
Paper
Submitted
12 Feb 2020
Accepted
24 Apr 2020
First published
27 Apr 2020

Soft Matter, 2020,16, 4625-4631

Author version available

On the pressure dependence of the thermodynamical scaling exponent γ

R. Casalini and T. C. Ransom, Soft Matter, 2020, 16, 4625 DOI: 10.1039/D0SM00254B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements