Issue 28, 2020

Two-dimensional Janus-like particles on a triangular lattice

Abstract

We have studied the phase behavior of a two-dimensional system of Janus-like particles on a triangular lattice using the Monte Carlo method in a grand canonical ensemble. Assuming that each particle can take on only one of the six orientations, two versions of the model have been considered. In the first version, the strength of attractive interactions has been assumed to depend on the degree to which the attractive patches of neighboring particles overlap. In the second version, it has been assumed that it is the same for any mutual orientations, in which the attractive patches overlap. It has been demonstrated that both models lead to qualitatively different phase behaviors. In the case of the first model, the self-assembly leads to different stripped structures depending on the density and temperature. In particular, we have found that, at sufficiently low temperatures, condensation leads from a very dilute lamellar gas phase to a high density zigzag phase. At intermediate temperatures, the system undergoes two first-order phase transitions, while, at sufficiently high temperatures, only one continuous transition takes place. The phase diagram has been estimated. In the case of the second model, we have found only one first-order transition at low temperatures. This transition occurs between a dilute gas-like phase and the ordered phase, which forms a kagome lattice of density equal to 6/7. A further increase of the density has been demonstrated to lead to the reorientation of particles and the formation of a dense glass-like structure.

Graphical abstract: Two-dimensional Janus-like particles on a triangular lattice

Article information

Article type
Paper
Submitted
13 Apr 2020
Accepted
15 Jun 2020
First published
15 Jun 2020

Soft Matter, 2020,16, 6633-6642

Two-dimensional Janus-like particles on a triangular lattice

A. Patrykiejew and W. Rżysko, Soft Matter, 2020, 16, 6633 DOI: 10.1039/D0SM00656D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements