Issue 27, 2020

Rod-assisted heterogeneous nucleation in active suspensions

Abstract

Motility induced phase separation as well as the nucleation process in active particle systems has gained extensive research attention very recently. Most studies so far have considered homogeneous cases without the influence of foreign seeds or impurities; however, the heterogeneous nucleation process, widely studied in passive systems, has not been systematically investigated yet. Here we study the heterogeneous nucleation process and phase behaviors of a suspension of active Brownian particles by introducing a rod-like passive seed. We found that such a seed can exponentially accelerate the nucleation rate and thus readily induce phase separation of a dilute active system, while a homogeneous one with the same volume fraction still maintains a single phase. It is observed that the seed would automatically detach from the dense phase after the completion of phase separation instead of staying inside as an impurity. Interestingly, we found that the phase behavior is re-entrant with the activity: single-phase states exist at both high and low activities, with phase separated states in between. Our results demonstrate that heterogeneous nucleation in an active system can show novel behaviors with respect to its passive counterpart, and pave the way for more future studies in relevant fields.

Graphical abstract: Rod-assisted heterogeneous nucleation in active suspensions

Article information

Article type
Paper
Submitted
15 Apr 2020
Accepted
15 Jun 2020
First published
26 Jun 2020

Soft Matter, 2020,16, 6434-6441

Rod-assisted heterogeneous nucleation in active suspensions

Y. Du, H. Jiang and Z. Hou, Soft Matter, 2020, 16, 6434 DOI: 10.1039/D0SM00672F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements