Issue 3, 2020

Holey graphene: an emerging versatile material

Abstract

Holey graphene, also known as perforated graphene is formed by generating in-plane holes in basal planes of graphene based materials. By exploiting the combined advantages of holes and graphene, holey graphene based materials have attracted significant interest due to their exceptional properties such as high electrical conductivity and high surface area. These remarkable properties have enabled holey graphene based materials to outperform its pristine form (graphene) and demonstrate their applicability in versatile fields including electrical energy storage (supercapacitors and Li-ion, Li–air, Li–S and Na-ion batteries), energy conversion (electro-water splitting and dye-sensitized solar cells), water desalination, bioseparation, fuel cells, gas sensors, and hydrogen storage and dye degradation systems. As a consequence, it is important to uncover the prime properties and the related potential industrial implications of holey graphene based materials for the development of further research. Hence, in the review, the properties of emerging holey graphene-based materials and various applications including principles, design, fabrication, and engineering aspects are discussed in detail. The recent advances in the state-of-the-art hole generation methods for graphene-based materials along with their working mechanisms, associated issues/solutions, and possible future are discussed. Additionally, the review is aimed at providing critical views on the current status and prospects and generating novel ideas for the development of holey graphene-based materials as a formidable candidate for versatile applications.

Graphical abstract: Holey graphene: an emerging versatile material

Article information

Article type
Review Article
Submitted
26 Sep 2019
Accepted
12 Nov 2019
First published
13 Nov 2019

J. Mater. Chem. A, 2020,8, 918-977

Holey graphene: an emerging versatile material

A. C. Lokhande, I. A. Qattan, C. D. Lokhande and S. P. Patole, J. Mater. Chem. A, 2020, 8, 918 DOI: 10.1039/C9TA10667G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements