Issue 4, 2020

Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li- ions

Abstract

Heterostructured nanocomposites comprising transition metal compounds (TMCs) with different bandgaps are attractive due to their excellent electrochemical performances. Candidates that combine various cations and anions are actively researched. Herein, it is demonstrated for the first time that nickel hydroxy chloride, once transformed into a heterostructured nanocomposite during the initial cycle, can be used as a new anode material for lithium-ion storage. In particular, the reaction mechanism for lithium-ion storage with a metal hydroxy chloride as the anode is demonstrated through various analyses for the first time. The model compound, nickel hydroxy chloride (Ni(OH)Cl), prepared by a one-pot hydrothermal method, is used to investigate the detailed conversion mechanism in Li-ion storage. Through systemically analyzed results, it is demonstrated that Ni(OH)Cl is transformed into Ni(OH)2 and NiCl2 after one cycle and that the layered Ni(OH)2/NiCl2 nanocomposite heterointerface reacts with Li ions from the second cycle onward. Flower-like Ni(OH)Cl microspheres display extremely high and stable cycling performance (1236 mA h g−1 for the 150th cycle at a current density of 0.2 A g−1) and outstanding rate capability (232 mA h g−1) at an extremely high current density of 30 A g−1.

Graphical abstract: Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li- ions

Supplementary files

Article information

Article type
Paper
Submitted
09 Nov 2019
Accepted
23 Dec 2019
First published
26 Dec 2019

J. Mater. Chem. A, 2020,8, 1939-1946

Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li- ions

S. H. Lim, G. D. Park, D. S. Jung, J. Lee and Y. C. Kang, J. Mater. Chem. A, 2020, 8, 1939 DOI: 10.1039/C9TA12321K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements