Issue 14, 2020

Oil-triggered switchable wettability on patterned alternating air/lubricant-infused superamphiphobic surfaces

Abstract

In the present study, we report a novel oil-triggered surface (OTS) by integrating three extreme states of hydrophobicity, i.e., ‘lotus-leaf-like’ superhydrophobicity, ‘nepenthes-like’ slippery liquid-infused surface hydrophobicity and ‘re-entrant-structure-induced’ superamphiphobicity. The OTS is fabricated by an ultra-fast laser based technology through creating alternating gas/oil infused superhydrophobic–superoleophilic micro-nanostructures among superamphiphobic micro-nanostructures. We demonstrate that the precisely arrayed superhydrophobic–superoleophilic micro-nanostructures can be reversely switched quickly to be in a ‘lotus-leaf-like’ gas-infused or ‘nepenthes-like’ oil-infused state through an oil-triggered method. The test droplets can slide with freedom on gas-infused superhydrophobic–superoleophilic patterns while they will be confined, guided or self-driven by oil-infused ones. Especially, the droplets can move along oil-infused patterns with a high mobility, but without pinning, liquid loss or cross contamination. The surfaces are further used as droplet-manipulation chips to attest real-time operating ability, on which the test droplets can be selectively ‘trapped’, ‘guided’, ‘directed’, ‘pumpless-moved’, ‘pumpless-dragged’, ‘pumpless-pulled’ and ‘pumpless-pushed’ in real time through the remote control of the oil-triggered method. In addition, our OTSs manifest a remarkable long-time stability of >80 days and cycle-to-cycle stability of >10 cycles. With multiple functions and various superior abilities, the OTSs have expansive application prospects. Especially, the oil-triggered strategy and laser-based technology proposed here may aid the development of various fields related to liquid manipulation and smart switchable surfaces.

Graphical abstract: Oil-triggered switchable wettability on patterned alternating air/lubricant-infused superamphiphobic surfaces

Supplementary files

Article information

Article type
Paper
Submitted
26 Dec 2019
Accepted
13 Mar 2020
First published
14 Mar 2020

J. Mater. Chem. A, 2020,8, 6647-6660

Oil-triggered switchable wettability on patterned alternating air/lubricant-infused superamphiphobic surfaces

W. Liu, R. Pan, M. Cai, X. Luo, C. Chen, G. Jiang, X. Hu, H. Zhang and M. Zhong, J. Mater. Chem. A, 2020, 8, 6647 DOI: 10.1039/C9TA14116B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements