Issue 23, 2020

A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate

Abstract

Direct CO2 conversion from flue gas into high-value products is of great significance not only in relieving environmental burden but alleviating the energy crisis by a low-cost and energy-saving avenue, yet few studies in this aspect have been reported. Herein, we report metal-node-dependent catalytic performance for solar-energy-powered CO2 reduction to formate in simulated flue gas by bimetallic Ni/Mg-MOF-74. The yield of HCOO with Ni0.75Mg0.25-MOF-74 as a catalyst in pure CO2 is 0.64 mmol h−1 gMOF−1 which is higher than that of Ni-MOF-74 (0.29 mmol h−1 gMOF−1) and Ni0.87Mg0.13-MOF-74 (0.54 mmol h−1 gMOF−1), whereas monometallic Mg-MOF-74 is almost inactive, indicating that reactivity relies on metal nodes. In simulated flue gas without water vapor at 20 °C, ∼80% of the reactivity in pure CO2 is retained, with HCOO generation reaching 0.52 mmol h−1 gMOF−1. This activity is comparable to that of the best MOF catalysts in pure CO2, demonstrating that Ni/Mg-MOF-74 not only overcomes the limitation from CO2 concentration, but also has good resistance to other gas components in flue gas at 20 °C. DFT calculations reveal the high output for HCOO from two crucial factors: strong CO2 binding affinity of Mg sites, and the synergistic effect of Mg and Ni leading to the stabilization of the key *OCOH intermediate with an appropriate energy barrier. This work paves a new route for double-metal MOFs to enhance the CO2 photoreduction reactivity in flue gas.

Graphical abstract: A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2020
Accepted
08 May 2020
First published
09 May 2020

J. Mater. Chem. A, 2020,8, 11712-11718

A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate

S. Guo, X. Qi, H. Zhou, J. Zhou, X. Wang, M. Dong, X. Zhao, C. Sun, X. Wang and Z. Su, J. Mater. Chem. A, 2020, 8, 11712 DOI: 10.1039/D0TA00205D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements