Issue 18, 2020

Synthesis and electrochemical properties of 2D molybdenum vanadium carbides – solid solution MXenes

Abstract

MXenes have demonstrated high performance as negative electrodes in supercapacitors with aqueous electrolytes due to their high redox capacitance. However, oxidation limits their use under positive potential, requiring asymmetric devices with positive electrodes made of other materials which are usually less capacitive compared to MXenes and therefore limit the device performances. Here, we report the synthesis of two-dimensional molybdenum vanadium carbides (MoxV4−xC3), previously unexplored double transition metal MXenes, by selective etching of aluminum from MoxV4−xAlC3 MAX phase precursors. Unlike the ordered double transition metal MXenes reported previously, MoxV4−xC3 exhibits a Mo–V solid solution in the transition metal layers. We have synthesized and characterized four different compositions of MoxV4−xC3 with x = 1, 1.5, 2, and 2.7. We showed that by changing the Mo : V ratio, the surface terminations (O : F ratio), and electrical and electrochemical properties of the resulting MXenes can be tuned. The Mo2.7V1.3C3 composition showed a remarkable volumetric capacitance (up to 860 F cm−3) and high electrical conductivity (830 S cm−1) at room temperature. Moreover, these solid solution MXenes have demonstrated the ability to operate in a wider range of positive potentials compared to other MXenes. Following this discovery, we coupled a Mo2.7V1.3C3 positive electrode with a well-studied Ti3C2 MXene negative electrode to create an all-MXene supercapacitor, as a proof of concept.

Graphical abstract: Synthesis and electrochemical properties of 2D molybdenum vanadium carbides – solid solution MXenes

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2020
Accepted
16 Apr 2020
First published
17 Apr 2020

J. Mater. Chem. A, 2020,8, 8957-8968

Synthesis and electrochemical properties of 2D molybdenum vanadium carbides – solid solution MXenes

D. Pinto, B. Anasori, H. Avireddy, C. E. Shuck, K. Hantanasirisakul, G. Deysher, J. R. Morante, W. Porzio, H. N. Alshareef and Y. Gogotsi, J. Mater. Chem. A, 2020, 8, 8957 DOI: 10.1039/D0TA01798A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements