Issue 42, 2020

Revealing the perovskite formation kinetics during chemical vapour deposition

Abstract

Amongst a number of deposition methods for perovskite layers, vapour based ones are promising for large area industrial production of solar cells. Different variants of such methods and high efficiencies have been reported recently, but there remains a lack of understanding on the formation process of perovskite layers with 2-step vapour deposition. Here, we present a new reactor design for a controlled investigation of the reaction kinetics for conversion of an evaporated metal halide precursor layer (such as a mixture of lead iodide and cesium bromide) into a perovskite layer by exposure to an organo-halide (such as formamidinium iodide) vapour under stable isobaric–isothermal conditions. With this new concept of gas flow reversal in a tubular reactor, we overcome an inherent problem of the lack of control over the precise start and end of the conversion process. We investigated the formation reaction of a mixed cation (Cs0.04FA0.96)PbI3 perovskite in well-defined intermediate states to elucidate the influence of processing conditions on the kinetics of perovskite and other phase formations. A high conversion rate of up to 60 nm min−1 is achieved with a well-controlled abrupt start and end of the vapor supply. Using our deposition method, a semitransparent solar cell with a power conversion efficiency (maximum power tracking) of 9.6% on a designated area of 0.27 cm2 is achieved in the initial phase of development where the charge extracting layers and interfaces are yet to be optimised.

Graphical abstract: Revealing the perovskite formation kinetics during chemical vapour deposition

Supplementary files

Article information

Article type
Communication
Submitted
29 Apr 2020
Accepted
24 Sep 2020
First published
12 Oct 2020

J. Mater. Chem. A, 2020,8, 21973-21982

Revealing the perovskite formation kinetics during chemical vapour deposition

T. Moser, K. Artuk, Y. Jiang, T. Feurer, E. Gilshtein, A. N. Tiwari and F. Fu, J. Mater. Chem. A, 2020, 8, 21973 DOI: 10.1039/D0TA04501B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements