Issue 12, 2020

Osmotic squat actuation in stiffness adjustable bacterial cellulose composite hydrogels

Abstract

Mechanically adaptive hydrogels can change their mechanical characteristics in response to external stimuli and have potential applications in biomechanical fields. To eliminate the undesired swelling/shrinkage in the responding process, poly(acrylic acid) (PAA) was grafted to acryloyl chloride (AC)-modified bacterial cellulose (BC) by free-radical polymerization. The obtained BC-g-PAA composite hydrogels showed adjustable stiffness in compression, remained soft at pH lower than 6 (compression strain over 49% at a stress of 0.1 MPa), and stiffened when pH reached 7 (compression strain lower than 27% at a stress of 0.1 MPa), while the volume change ratio was consistently lower than 15%. Based on this, the hydrogels showed interesting squat actuation to lift a weight. The BC composite hydrogels exhibited dual pH-responsiveness after grafting PAA with poly[2-(dimethylamino)ethyl methacrylate], confirming the general availability of this strategy in fabricating volumetrically stable and mechanically adaptive hydrogels. The surrounding solution-independent softening of BC-g-PAA hydrogels was observed in 8 min under UV irradiation via a photo-triggered pH jump reaction. By virtue of the selective UV irradiation, spatiotemporally controllable softening with actuation in BC-g-PAA hydrogels was realized. The developed pH-responsive mechanically adaptive BC composite hydrogels with high dimensional stability and UV-activated spatiotemporal squat actuating capability are expected to provide more options in developing novel bioimplants and smart structures.

Graphical abstract: Osmotic squat actuation in stiffness adjustable bacterial cellulose composite hydrogels

Article information

Article type
Paper
Submitted
19 Dec 2019
Accepted
06 Feb 2020
First published
07 Feb 2020

J. Mater. Chem. B, 2020,8, 2400-2409

Author version available

Osmotic squat actuation in stiffness adjustable bacterial cellulose composite hydrogels

C. Qian, T. Asoh and H. Uyama, J. Mater. Chem. B, 2020, 8, 2400 DOI: 10.1039/C9TB02880C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements