Rapidly dissolving microneedle patch for synergistic gene and photothermal therapy of subcutaneous tumor
Abstract
The synergistic combination of gene therapy and photothermal therapy (PTT) has been widely investigated as a promising strategy for cancer treatment. To deliver genes and photothermal agents simultaneously and accurately to a tumor site, a microneedle (MN) patch co-loaded with p53 DNA and IR820 was fabricated by a two-step casting method. Hyaluronic acid was chosen as a matrix and p53 DNA and IR820 were mainly loaded into the tips to enhance utilization and reduce waste. The MN patch could efficiently penetrate the stratum corneum, and dissolve rapidly to release p53 DNA and IR820 in the subcutaneous tumor site. Due to the efficient photothermal efficacy of IR820, the temperature of the tumor site where the MN patch was applied increased by 14.7 °C under near-infrared light irradiation. The MN patch showed excellent antitumor effects in vivo owing to the synergistic effect of gene therapy and PTT. Consequently, the p53 DNA/IR820 MN patch may be a promising synergistic strategy for subcutaneous tumor treatments.