Issue 18, 2020

Modular microcarrier technologies for cell-based bone regeneration

Abstract

A variety of materials-based approaches to accelerate the regeneration of damaged bone have been developed to meet the important clinical need for improved bone fillers. This comprehensive review covers the materials and technologies used in modular microcarrier-based methods for delivery of progenitor cells in orthopaedic repair applications. It provides an overview of the field and the rationale for using microcarriers combined with osteoprogenitor cells for bone regeneration in particular. The general concepts and methods used in microcarrier-based cell culture and delivery are described, and methods for fabricating and characterizing microcarriers designed for specific indications are presented. A comprehensive review of the current literature on the use of microcarriers in bone regeneration is provided, with emphasis on key developments in the field and their impact. The studies reviewed are organized according to the broad classes of materials that are used for fabricating microcarriers, including polysaccharides, proteins and peptides, ceramics, and synthetic polymers. In addition, composite microcarriers that incorporate multiple material types or that are mineralized biomimetically are included. In each case, the fabrication, processing, characterization, and resulting function of the microcarriers is described, with an emphasis on their ability to support osteogenic differentiation of progenitor cells in vitro, and their effectiveness in healing bone defects in vivo. In addition, a summary of the current state of the field is provided, as are future perspectives on how microcarrier technologies may be enhanced to create improved cell-based therapies for bone regeneration.

Graphical abstract: Modular microcarrier technologies for cell-based bone regeneration

Article information

Article type
Review Article
Submitted
13 Jan 2020
Accepted
17 Mar 2020
First published
18 Mar 2020

J. Mater. Chem. B, 2020,8, 3972-3984

Modular microcarrier technologies for cell-based bone regeneration

C. E. Nweke and J. P. Stegemann, J. Mater. Chem. B, 2020, 8, 3972 DOI: 10.1039/D0TB00116C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements