“Watson–Crick GC”-inspired supramolecular nanodrug of methotrexate and 5-fluorouracil for tumor microenvironment-activatable self-recognizing synergistic chemotherapy†
Abstract
Carrier-free nanodrugs, generated via the straightforward small-molecule self-assembly of anticancer drugs, provide a promising route for cancer chemotherapy. However, their low structural stability, lack of targeting specificity, and poor stimulus responsiveness are still limiting their therapeutic effect. Inspired by Watson–Crick GC base pairing, the FDA-approved chemo-drug methotrexate (MTX, which can bind with folate receptors) and 5-fluorouracil (5-FU, a DNA/RNA synthetase inhibitor) were adopted for direct assembly into self-recognizing MTX–5-FU nanoparticles via “Watson–Crick-like base pairing”-driven precise supramolecular assembly. Sequentially, our synthesized weak acidity-responsive polyethylene glycol (PEG) was inserted onto the nanoparticle surface to temporarily shield the self-targeting function of MTX and prolong the blood circulation time. Once PEG–MTX–5-FU nanoparticles reached the weakly acidic tumor microenvironment, the PEG corona could be cleaved from their surface and then MTX could be re-exposed to recover its self-recognition ability and significantly elevate tumor cell uptake; furthermore, the de-PEGylated MTX–5-FU nanoparticles could respond to the stronger acidity of lysosome, triggering core disassembly and thus the burst release of both MTX and 5-FU. Further in vitro and in vivo studies consistently confirmed that the nanodrugs exhibited preferable accumulation at the tumor sites with highly synergistic chemotherapeutic effects. The supramolecular recognition-inspired, cascade-triggered self-targeting and controlled release of nanodrugs could be a promising strategy to improve synergistic chemotherapy.
- This article is part of the themed collection: Journal of Materials Chemistry B HOT Papers