Issue 24, 2020

A novel theranostic nano-platform (PB@FePt–HA-g-PEG) for tumor chemodynamic–photothermal co-therapy and triple-modal imaging (MR/CT/PI) diagnosis

Abstract

The construction of multi-functional oncotherapy nano-platforms combining diagnosis and therapy remains a tough challenge. Prussian blue nano-cubes with optimized particle size were applied as photothermal agents and loaded with FePt NPs, effective ferroptosis agents, on the surface via an in situ reduction strategy. To attain the goal of precise medicine, hyaluronic acid was wrapped around the surface of the nanocomposites (PB@FePt NCs) for highly specific recognition of tumor cells. Finally, we successfully designed and fabricated a nano-agent (PB@FePt–HA-g-PEG NCs) to serve as a versatile nano-platform with both highly specific targeting ability for chemodynamic–photothermal co-therapy and triple-modal imaging (magnetic resonance/computed tomography/photothermal imaging) capability. Via intravenous injection, the as-constructed oncotherapy nano-platform could effectively ablate 4T1 tumor xenografts with excellent biocompatibility for chemodynamic–photothermal co-therapy. In this study we conducted a reasonable exploration to design multi-functional oncotherapy nano-platforms combining multiplexed imaging diagnosis and high therapeutic performance, which provides an innovative paradigm for precision cancer treatment.

Graphical abstract: A novel theranostic nano-platform (PB@FePt–HA-g-PEG) for tumor chemodynamic–photothermal co-therapy and triple-modal imaging (MR/CT/PI) diagnosis

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2020
Accepted
10 May 2020
First published
11 May 2020

J. Mater. Chem. B, 2020,8, 5351-5360

A novel theranostic nano-platform (PB@FePt–HA-g-PEG) for tumor chemodynamic–photothermal co-therapy and triple-modal imaging (MR/CT/PI) diagnosis

Z. Hu, S. Wang, Z. Dai, H. Zhang and X. Zheng, J. Mater. Chem. B, 2020, 8, 5351 DOI: 10.1039/D0TB00708K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements