Issue 38, 2020

Smart design for a flexible, functionalized and electroresponsive hybrid platform based on poly(3,4-ethylenedioxythiophene) derivatives to improve cell viability

Abstract

Development of smart functionalized materials for tissue engineering has attracted significant attention in recent years. In this work we have functionalized a free-standing film of isotactic polypropylene (i-PP), a synthetic polymer that is typically used for biomedical applications (e.g. fabrication of implants), for engineering a 3D all-polymer flexible interface that enhances cell proliferation by a factor of ca. three. A hierarchical construction process consisting of three steps was engineered as follows: (1) functionalization of i-PP by applying a plasma treatment, resulting in i-PPf; (2) i-PPf surface coating with a layer of polyhydroxymethy-3,4-ethylenedioxythiophene nanoparticles (PHMeEDOT NPs) by in situ chemical oxidative polymerization of HMeEDOT; and (3) deposition on the previously activated and PHMeEDOT NPs coated i-PP film (i-PPf/NP) of a graft conjugated copolymer, having a poly(3,4-ethylenedioxythiophene) (PEDOT) backbone, and randomly distributed short poly(ε-caprolactone) (PCL) side chains (PEDOT-g-PCL), as a coating layer of ∼9 μm in thickness. The properties of the resulting bioplatform, which can be defined as a robust macroscopic composite coated with a “molecular composite”, were investigated in detail, and both adhesion and proliferation of two human cell lines have been evaluated, as well. The results demonstrate that the incorporation of the PEDOT-g-PCL layer significantly improves cell attachment and cell growth not only when compared to i-PP but also with respect to the same platform coated with only PEDOT, constructed in a similar manner, as a control.

Graphical abstract: Smart design for a flexible, functionalized and electroresponsive hybrid platform based on poly(3,4-ethylenedioxythiophene) derivatives to improve cell viability

Supplementary files

Article information

Article type
Paper
Submitted
15 May 2020
Accepted
17 Aug 2020
First published
17 Aug 2020

J. Mater. Chem. B, 2020,8, 8864-8877

Smart design for a flexible, functionalized and electroresponsive hybrid platform based on poly(3,4-ethylenedioxythiophene) derivatives to improve cell viability

B. G. Molina, A. D. Bendrea, S. Lanzalaco, L. Franco, L. Cianga, L. J. del Valle, J. Puiggali, P. Turon, E. Armelin, I. Cianga and C. Aleman, J. Mater. Chem. B, 2020, 8, 8864 DOI: 10.1039/D0TB01259A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements