Supramolecular hydrogels based on custom-made poly(ether urethane)s and cyclodextrins as potential drug delivery vehicles: design and characterization†
Abstract
The design of supramolecular (SM) hydrogels based on host–guest complexes represents an effective strategy to develop drug delivery systems. In this work, we designed SM hydrogels based on α-cyclodextrin and high-molar mass amphiphilic poly(ether urethane)s (PEUs, ) based on Poloxamer® 407 and differing in their chain extender. The successful formation of poly(pseudo)rotaxanes and their supramolecular interactions were chemically demonstrated. Then, self-healing (80–100% mechanical recovery) supramolecular hydrogels were developed by mixing PEU and α-cyclodextrin solutions at different concentrations. Stability in physiological-like environment and mechanical properties improved with increasing α-cyclodextrin content (9–10% w/v), meanwhile gelation time decreased. A synergistic effect of poly(pseudo)rotaxanes crystals and PEU micellar structures on gel properties was observed: the first were predominant at low PEU concentrations (1–5% w/v), while the latter prevailed at high PEU concentrations (7–9% w/v). Increasing PEU concentration led to gels with increased dissolution rate, not-fully developed networks and slight cytotoxicity, meanwhile residence time in aqueous media improved (>7 d). At low PEU concentrations (1–5% w/v), cytocompatible gels (100% cell viability) were obtained, which maintained their shape in aqueous medium up to 5 d and completely dissolved within 7 d. PEU chemical composition affected PEU/α-cyclodextrin interactions, with longer gelation time and lower mechanical properties in gels based on PEU with pendant functionalities. Gels progressively released a model molecule (fluorescein isothiocyanate-dextran) within 3–4 days with no initial burst release. We thus demonstrated the suitability of custom-made PEUs as constituent of SM hydrogels with α-cyclodextrin and the high potential of the resulting systems for drug delivery applications.