Issue 15, 2020

Blue-emitting thermoreversible oligourethane gelators with aggregation-induced emission properties

Abstract

Blue-emitting gels are scarce, especially oligomeric/polymeric systems. Here, a series of 4,4′-sulfonyldiphenol (SDP) based oligourethane derivatives (OUs), namely OUHDI, OUHMDI and OUTDI based on 1,6-hexamethylene diisocyanate, 4,4′-methylenebis(cyclohexyl isocyanate) and 2,4-diisocyanatotoluene, respectively, were rationally designed and obtained by simple procedures. The new oligomers all display aggregation-induced blue fluorescence and upon gelation they achieve enhanced bright deep-blue emission as a result of interchain hydrogen bonding and oxygen cluster interactions. The OUs show spontaneous thermoreversible gelation in solvents which possess hydrogen-bond receptor units (C[double bond, length as m-dash]O or S[double bond, length as m-dash]O) which facilitate self-assembly of the OU chains into nanotubes. The oligourethane gels (OUGs) possess excellent ability for resisting external stress while at the same time exhibiting a distinct viscous flow state. The results illustrate that heteroatomic non-conjugated oligomers with advantageous hydrogen bonding interactions and oxygen clusters provide an efficient route to photoluminescent blue-emitting gels. The thermoreversible OUGs with excellent mechanical properties have been exploited to make sticky coatings, transparent films and a blue fluorescent molded shape using simple fabrication processes.

Graphical abstract: Blue-emitting thermoreversible oligourethane gelators with aggregation-induced emission properties

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2020
Accepted
11 Mar 2020
First published
20 Mar 2020

J. Mater. Chem. C, 2020,8, 5137-5142

Blue-emitting thermoreversible oligourethane gelators with aggregation-induced emission properties

N. Jiang, D. Zhu, Z. Su and M. R. Bryce, J. Mater. Chem. C, 2020, 8, 5137 DOI: 10.1039/D0TC00757A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements