Issue 32, 2020

Scaling of capacitance of PEDOT:PSS: volume vs. area

Abstract

Poly(3,4-ethylentedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most studied materials for organic bioelectronics, supercapacitors and organic photovoltaics. Its low impedance is ascribed to the so-called volumetric capacitance, a property that phenomenologically correlates the capacitive coupling/charge storage in devices to the PEDOT:PSS volume/thickness. Here we investigate the correlation between the capacitance and the electroactive surface area (ESA) for large-volume spin-cast PEDOT:PSS electrodes. We measure the capacitance with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and characterize the surface morphology by atomic force microscopy and X-ray photoelectron spectroscopy. Capacitance of PEDOT:PSS films scales with volume up to ∼5 × 106 μm3 but is saturated at larger volumes. This scaling behavior is paralleled by the scaling of the ESA, hence the ratio between the effective capacitance and ESA remains constant across the whole data set, thus showing that the specific areal capacitance is indeed the relevant material property of PEDOT:PSS. EIS data fit supports the experimental evidence obtained by CV, further revealing that the diffusion time constant is also saturated at high volumes. This supports the scenario where the effective capacitance relates to the ion accessible ESA, and shows that the saturation of the capacitance arises from a change of ion penetration from a diffusive (at small volumes) to a non-diffusive regime at large volumes.

Graphical abstract: Scaling of capacitance of PEDOT:PSS: volume vs. area

Supplementary files

Article information

Article type
Paper
Submitted
26 Feb 2020
Accepted
08 Jul 2020
First published
08 Jul 2020

J. Mater. Chem. C, 2020,8, 11252-11262

Scaling of capacitance of PEDOT:PSS: volume vs. area

M. Bianchi, S. Carli, M. Di Lauro, M. Prato, M. Murgia, L. Fadiga and F. Biscarini, J. Mater. Chem. C, 2020, 8, 11252 DOI: 10.1039/D0TC00992J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements