Multiple photoluminescence of spiro[acridine-fluorene]-based o-carboranyl compounds with potential as a visual sensory material†
Abstract
Two spiro[acridine-9,9′-fluorene]-based closo-o-carboranyl compounds, namely p-SAC and o-SAC, were prepared and fully characterized. p-SAC exhibited a weak high energy emission trace only in tetrahydrofuran (THF) at 298 K, while the photoluminescence (PL) spectra at 77 K exhibited intense emission in the low energy region. However, o-SAC exhibited an excellent dual-emissive pattern in THF at both 298 and 77 K. The electronic transition in each excited state (S1) was calculated, which confirmed that the high and low energy emission originated from locally excited (LE) states on the fluorene moieties and intramolecular charge-transfer (ICT) transitions corresponding to o-carboranes, respectively. All these characteristics indicated that ICT-based radiative decay was only favored in the rigid state, where structural fluctuations were restricted. Energy barriers were calculated based on relative energies at various dihedral angles around the o-carborane cages in p-SAC and o-SAC. The rotational motion of the o-carborane cage was less restricted in p-SAC when compared to o-SAC, resulting in suppression of the ICT-based emission when p-SAC was in solution. The PL experiments in the THF/water mixtures indicated that these features were caused by the aggregation-induced emission (AIE) effect. An acetonitrile solution containing relatively high concentrations of o-SAC (ca. 10−3 M) exhibited a dramatic emission color change from deep red to sky blue when the temperature was increased. The higher temperature caused a natural conversion from a colloidal state (slightly aggregated) to a clear solution. Consequently, the photophysical features of p-SAC and o-SAC demonstrated the application potential of π-aromatic conjugated o-carboranyl compounds as visual sensory materials.
- This article is part of the themed collection: Editor’s Choice: Spiro compounds for electronics