Issue 47, 2020

Eco-friendly, solution-processable and efficient low-energy lighting phosphors: copper halide based hybrid semiconductors Cu4X6(L)2 (X = Br, I) composed of covalent, ionic and coordinate bonds

Abstract

A series of copper halide based inorganic–organic hybrid semiconductors have been synthesized. Structural analysis confirms that all compounds are composed of one-dimensional Cu4X62− anionic chains that coordinate to cationic ligands via Cu–N dative bonds. Different coordination affinities of the ligands lead to two types of ligand arrangements with various structural distortions. All compounds are highly resistant to heat and moisture as a result of the combination of coordinate and ionic bonds. Low energy emission with high efficiency is achieved for these compounds and the emission energy (∼552–615 nm) and color (yellow-orange) can be tuned by varying the ligand and halogen element. The electronic structure and luminescence mechanism are examined by both experimental and theoretical methods. More importantly, all compounds demonstrate good solubility in polar aprotic solvents, a desired property that is absent in all other CuX hybrid families of extended structures, which is attributed primarily to the ionic nature of this material class. The good solution-processability, and cost effective and easily scalable synthesis coupled with high quantum efficiencies and framework stability make these hybrid materials promising phosphors for general lighting applications.

Graphical abstract: Eco-friendly, solution-processable and efficient low-energy lighting phosphors: copper halide based hybrid semiconductors Cu4X6(L)2 (X = Br, I) composed of covalent, ionic and coordinate bonds

Supplementary files

Article information

Article type
Paper
Submitted
30 Sep 2020
Accepted
28 Oct 2020
First published
29 Oct 2020

J. Mater. Chem. C, 2020,8, 16790-16797

Author version available

Eco-friendly, solution-processable and efficient low-energy lighting phosphors: copper halide based hybrid semiconductors Cu4X6(L)2 (X = Br, I) composed of covalent, ionic and coordinate bonds

X. Hei, S. J. Teat, W. Liu and J. Li, J. Mater. Chem. C, 2020, 8, 16790 DOI: 10.1039/D0TC04672H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements