Issue 11, 2020

Gold alloy-based nanozyme sensor arrays for biothiol detection

Abstract

Biothiols play an important role in living cells and are associated with many diseases. Thus, it is necessary to develop a facile, cost-effective, and convenient analytical method for the detection of biothiols. Nanozymes are functional nanomaterials with enzymatic activities. Due to their unique advantages (e.g., low cost, high stability, and multifunctionality), nanozymes have been extensively used to construct sensing systems. Previous studies demonstrated colorimetric assays for biothiol detection because they could competitively inhibit the peroxidase-like activities of nanozymes. However, few studies were able to differentiate biothiols from each other. To address these challenges, herein, we first synthesized Au alloy nanozymes with better peroxidase-like activities than gold nanoparticles (AuNPs). Then, cross-reactive sensor arrays were constructed with three alloy nanozymes. Six typical biothiols (i.e., glutathione, cysteine, dithiothreitol, mercaptoacetic acid, mercaptoethanol, and mercaptosuccinic acid) were successfully detected and discriminated by the as-prepared nanozyme sensor arrays. Moreover, the practical application of the nanozyme sensor arrays was demonstrated by discriminating biothiols in serum successfully.

Graphical abstract: Gold alloy-based nanozyme sensor arrays for biothiol detection

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2020
Accepted
25 Mar 2020
First published
25 Mar 2020

Analyst, 2020,145, 3916-3921

Gold alloy-based nanozyme sensor arrays for biothiol detection

J. Lin, Q. Wang, X. Wang, Y. Zhu, X. Zhou and H. Wei, Analyst, 2020, 145, 3916 DOI: 10.1039/D0AN00451K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements