Issue 9, 2021

Flexible thread-based electrochemical sensors for oxygen monitoring

Abstract

Oxygen plays a key role in human physiology and is abnormally modulated in various disease pathologies making its in situ monitoring quite important. Most oxygen sensors are not able to measure oxygen levels deep inside the tissue or have mismatched electrode–tissue interfaces. In this study we developed a flexible thread-based oxygen sensor that combines the unique advantages of minimal invasiveness and superior flexibility offering the possibility for tissue integration. The sensor is featured by a simple and low-cost fabrication approach which allows for measuring the overall oxygen concentration either over a large surface area or locally at any spot in any three-dimensional environment with high spatial accuracy and high sensitivity. The sensor can sensitively detect dissolved oxygen levels within the physiological range of tissue oxygenation. The sensor's performance is insensitive to pH variation from 5.8 to 8.0. The sensor shows good repeatability and stability over a period of one week in phosphate buffered saline. In addition, the signal variation is less than 10% after hundreds of cycles of physical bending. Using a hydrogel-based tissue model the sensor has been shown to probe dissolved oxygen levels at different spatial locations inside a tissue-like environment.

Graphical abstract: Flexible thread-based electrochemical sensors for oxygen monitoring

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2020
Accepted
03 Mar 2021
First published
09 Mar 2021

Analyst, 2021,146, 2983-2990

Author version available

Flexible thread-based electrochemical sensors for oxygen monitoring

J. Xia and S. Sonkusale, Analyst, 2021, 146, 2983 DOI: 10.1039/D0AN02400G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements