A lateral flow strip for on-site detection of tobramycin based on dual-functional platinum-decorated gold nanoparticles†
Abstract
A novel lateral flow strip assay has been developed for rapid on-site detection of tobramycin. In this assay, unique dual-functional platinum-decorated gold nanoparticles (Au@Pt NPs) are synthesized by covering conventional gold nanoparticles (AuNPs) with an ultra-thin Pt film. Au@Pt NPs retain the plasmon activity of AuNPs and exhibit ultra-high catalytic activity that the Pt skin can achieve. The aptamer (Apt) specific for tobramycin and its complementary DNA (cDNA) are loaded on Au@Pt NPs as a duplex probe through the thiol group modified at the 5′ end of the cDNA. When tobramycin is present, it binds specifically to the aptamer, resulting in its dehybridization from the cDNA and detachment from the surface of Au@Pt NPs. Then Au@Pt NPs can be captured by the fixed probe (DNA1) on the test zone (T zone) of the lateral flow strip through the hybridization between DNA1 and cDNA. The dual-functional Au@Pt NPs provide two different detection modes: one is based on the color of AuNPs (low sensitivity mode) and the other is based on the chromogenic reaction catalyzed by the Pt nanozyme (high sensitivity mode). The strip can complete the visual detection process of tobramycin within 10 min, and the cutoff values for the naked eye detection in the two modes are 60 nM and 5 nM, respectively. Furthermore, using a portable scanning reader and ImageJ software, quantitative detection can be achieved. The limits of detection (LOD) of the two modes are 0.09 nM and 0.02 nM, respectively. The strip has been successfully applied to detect tobramycin in different food samples. Therefore, Au@Pt NPs and the strip provide a highly sensitive, rapid and economical way for in-spot detection of tobramycin residues. The strip can be run in two modes, which can realize the on-demand adjustment of the detection performance and offer wider application prospects in diverse scenarios.