Issue 12, 2021

Mapping the distribution of double bond location isomers in lipids across mouse tissues

Abstract

Lipids are highly diverse and essential biomolecules in all living systems. As lipid homeostasis is often perturbed in metabolic diseases, these molecules can serve as both biomarkers and drug targets. The development of modern mass spectrometry (MS) provided the platform for large-scale lipidomic studies at the level of molecular species. Traditionally, more detailed structural information, such as the C[double bond, length as m-dash]C location, was mostly assumed instead of properly measured, though the specific isomers were indicated as potential biomarkers of cancers or cardiovascular diseases. Recent C[double bond, length as m-dash]C localization methods, including the Paternò–Büchi (PB) reaction, have shown the prevalent and heterogeneous distribution of C[double bond, length as m-dash]C location in lipids across tissues. Mapping the lipidome of model animals at the level of C[double bond, length as m-dash]C position would increase the understanding of the metabolism and function of lipid isomers, facilitating clinical research. In this study, we employed an online PB reaction on a liquid chromatography-high resolution MS platform to map C[double bond, length as m-dash]C location isomers in five different murine tissues. We analyzed phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins; we relatively quantified and mapped the distribution of ∼30 groups of co-existing isomers, characterized by different chain lengths and degrees of unsaturation. More specifically, we performed relative quantitation of four isomers of the C16:1 fatty acyl, which included rarely reported n-10 and n-5 species besides n-9 and n-7 isomers. We showed a small variation of the isomers’ relative composition among individual animals (<20%) but significant differences across different lipid species and mouse tissues. Our results provided an initial database to map alternative lipid metabolic pathways at the tissue level.

Graphical abstract: Mapping the distribution of double bond location isomers in lipids across mouse tissues

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2021
Accepted
28 Apr 2021
First published
11 May 2021

Analyst, 2021,146, 3899-3907

Mapping the distribution of double bond location isomers in lipids across mouse tissues

H. Ren, A. Triebl, S. Muralidharan, M. R. Wenk, Y. Xia and F. Torta, Analyst, 2021, 146, 3899 DOI: 10.1039/D1AN00449B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements