The development of an electrochemical DNA biosensor based on quercetin as a new electroactive indicator for DNA hybridization detection
Abstract
An electrochemical DNA biosensor was designed for the detection of a specific target DNA after hybridization with a complementary DNA probe immobilized onto a glassy carbon electrode surface. Quercetin was successfully used as a new electroactive indicator for the hybridization detection. Different interactions of quercetin with single-stranded DNA (ss-DNA) and double-stranded DNA (ds-DNA) led to different electrochemical signals, which were recorded as cyclic and differential pulse voltammograms enabling hybridization detection. Various parameters influencing the biosensor performance were evaluated, and optimized conditions were obtained. Also, the detection limit of 83 pM with a relative standard deviation of 4.6% was obtained for the determination of complementary oligonucleotides. Then, the developed biosensor was applied successively for the detection of short sequences of hepatitis C virus (HCV1). The hybridization between the probe (PHCV1) and its complementary sequence (HCV1a) as the target was studied. Some hybridization experiments with noncomplementary oligonucleotides also showed that the suggested DNA sensor responds selectively to the target.