An electrochemical immunosensor based on reduced graphene oxide/multiwalled carbon nanotubes/thionine/gold nanoparticle nanocomposites for the sensitive testing of follicle-stimulating hormone
Abstract
Follicle-Stimulating Hormone (FSH) is a kind of gonadotropin which can promote human reproduction and development. Abnormal FSH levels may lead to endocrine disorders and infertility. Sensitive determination of FSH is very significant for the clinical diagnosis of these diseases. Here, an electrochemical immunosensor based on a screen-printed electrode (SPE) was developed for the detection of FSH. Nanocomposites, compounded with reduced graphene oxide (rGO), multiwalled carbon nanotubes (MWCNTs), thionine (Thi) and gold nanoparticles (AuNPs), were used for increasing the specific surface area to adsorb molecules and amplify signals. The rGO/MWCNTs/Thi/AuNP nanocomposites, anti-FSH and BSA were successively assembled onto a SPE to fabricate the immunosensor. Electrochemical performance of the modified immunosensor was studied by differential pulse voltammetry (DPV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). FSH testing was based on the principle that the insulating FSH antigen–antibody immunocomplex could retard the electron transfer of Thi which led to the decrease of the DPV current response. Under optimum conditions, the rGO/MWCNTs/Thi/AuNP modified immunosensor exhibited high sensitivity and accuracy for the determination of FSH in a linear range from 1 mIU mL−1 to 250 mIU mL−1, and the detection limit was 0.05 mIU mL−1 at a signal-to-noise ratio of 3. The immunosensor was successfully applied for the determination of quality serum samples with a recovery of 94.0–109.8%. The electrochemical immunosensor could be utilized for testing other gonadotropins.