Rapid detection of silver ions based on luminescent carbon nanodots for multicolor patterning, smartphone sensors, and bioimaging applications†
Abstract
Photoluminescent nitrogen and sulfur co-doped carbon nanodots (N,S-CNDs) were prepared via single-step hydrothermal carbonization using 2,4-diaminobenzenesulfonic acid (2,4-DABSA) as the sole precursor. The synthesized N,S-CNDs are easily dispersed in aqueous solution and have an average particle size of 5.0 ± 0.2 nm, showing a high quantum yield of 23.1% with excellent stability. The surface states of the N,S-CNDs were confirmed by Fourier-transform infrared spectroscopy, powder X-ray diffractometry, Raman spectroscopy, and X-ray photoelectron spectroscopy techniques. These N,S-CNDs were applied for the rapid visual sensing detection of Ag+ ions, which can be identified by their photoluminescent color change under ultraviolet (UV) light illumination at 365 nm within 5 s. Furthermore, a linear correlation coefficient between P0/P and Ag+ ions was observed in the linear range of 0–1.2 μM with a detection limit of 7.88 nM. The proposed method was successfully used for the sensitive detection of Ag+ ions in real samples with satisfactory recoveries and relative standard deviation. The photoluminescence properties of N,S-CND and N,S-CNDs/Ag+ aqueous solutions were demonstrated by their invisible inks that can only be seen when irradiated with UV light. The RGB values of N,S-CND and N,S-CNDs/Ag+ aqueous solutions were measured using a color selector smartphone application. In addition, N,S-CND and N,S-CNDs/Ag+ aqueous solutions were further used for the multicolor imaging of HCT-116 cancer cells due to the low toxicity of N,S-CNDs.