Issue 4, 2021

Biomaterial strategies to replicate gynecological tissue

Abstract

Women's health is an important and understudied area of research. The current standard of care for many gynecological diseases such as cancer or autoimmune-linked disorders such as endometriosis is surgery; however, the underlying mechanisms of action of many gynecological diseases are poorly understood. The field of tissue engineering has the potential to transform the field of women's health by developing in vitro models of healthy and diseased tissue that could be used to identify novel treatment strategies as well as gain a better understanding of complex signaling dynamics. Identification of the appropriate biomaterials, cell types, and stimuli (the tissue engineering triad) needed to build these in vitro models can be gleaned by interrogating the underlying extracellular matrix, cell organization, and soluble factors present in the tissue. In this review, we provide a general overview of the biology and components of the major tissues that make up the female reproductive system (ovaries, fallopian tubes, the uterus, and cervix) as well as a comprehensive survey of the different biomaterials that have been chosen to build in vitro models of these tissues. Furthermore, for each tissue, we recommend guiding principles in the design of in vitro models and discuss their potential to be used in drug screening and mechanistic studies.

Graphical abstract: Biomaterial strategies to replicate gynecological tissue

Article information

Article type
Review Article
Submitted
26 Jul 2020
Accepted
06 Nov 2020
First published
19 Nov 2020

Biomater. Sci., 2021,9, 1117-1134

Biomaterial strategies to replicate gynecological tissue

I. Cadena, A. Chen, A. Arvidson and K. C. Fogg, Biomater. Sci., 2021, 9, 1117 DOI: 10.1039/D0BM01240H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements