Tentative identification of key factors determining the hemostatic efficiency of diatom frustule†
Abstract
It is increasingly essential to develop excellent materials for rapid hemorrhage control. Our previous study showed that centric diatoms such as frustules were superior to QuikClot® in hemostasis, however, related studies in pennate diatoms are still scarce. The morphological and physicochemical properties of pennate diatoms are quite different from those of centric diatoms, meaning that significant differences may also be observed from their hemostatic effects. Thus, the hemostasis effects of four pennate diatom frustules (Cocconeiopsis orthoneoides, Navicula avium, Navicula sp., and Pleurosigma indicum) were investigated in this study. Herein, all diatom frustules demonstrated outstanding hemostasis performance. For example, the in vitro coagulation time of C. orthoneoides (100.33 ± 9.5 s) was 32.4% lower than that of QuikClot®. Meanwhile, the hemostatic times of C. orthoneoides in the rat tail amputation and femoral artery models were 82 s and 180 s, respectively, only around one-half and one-third of the QuikClot® values. Moreover, the blood loss amounts of C. orthoneoides in the rat tail amputation and femoral artery model were 73.4% and 61% less than that of QuikClot®. Besides that, diatom frustules also exhibited favorable biocompatibility (hemolysis ratio <5%, MEFs cell viabilities >80%, and no inflammation). To find out the key factors underlying the hemostatic effect of frustules, Pearson correlation analysis was further performed in this study. The results demonstrated that the coagulation reaction time (R) was negatively correlated with the specific surface area and liquid absorbability but positively with the diatom pore diameter. The angle α, indicating the clot formation rate, was negative to the diatom size and pore diameter. Additionally, MA also showed a negative correlation with the BET value. This study can enrich our knowledge about the application potential of diatoms in the field of bleeding control and is helpful in deepening our understanding about the hemostatic mechanism of frustules.