Guanidine-rich helical polypeptides bearing hydrophobic amino acid pendants for efficient gene delivery†
Abstract
Non-viral gene delivery vectors with high transfection efficiency both in vitro and in vivo and low cytotoxicity are highly desirable for clinical applications. Herein, a series of guanidine-rich polypeptides bearing hydrophobic amino acid pendants was efficiently prepared via the 1,3-dipolar cycloaddition between azido decorated polypeptide and propargyl functionalized guanidinium and N-acetylamino acids. CD analysis indicated α-helical conformations of all resulting polypeptides in aqueous solution. The guanidine-rich polypeptide/DNA complexes showed significantly enhanced cellular internalization and high cell viability (>90%) in different mammalian cell lines (i.e., HeLa and RAW 264.7) at concentrations of the best performance. The top-performing guanidine-rich polypeptide containing 10% N-acetyl-L-valine pendants outperformed the commercial transfection reagent PEI by 400 times in vitro and 6 times in vivo. This study provides a new guidance for future molecular design of non-viral gene vectors with high delivery efficiency and low cytotoxicity.