Issue 14, 2021

Endogenous reactive oxygen species burst induced and spatiotemporally controlled multiple drug release by traceable nanoparticles for enhancing antitumor efficacy

Abstract

Reactive oxygen species (ROS) are not only used as a therapeutic reagent in chemodynamic therapy (CDT), to stimulate the release of antineoplastic drugs, they can also be used to achieve a combined effect of CDT and chemotherapy to enhance anticancer effects. Herein, we synthesized a pH-responsive prodrug (PEG2k-NH-N-DOX), ROS-responsive prodrug (PEG2k-S-S-CPT-ROS), organic CDT agents (TPP-PEG2k-LND, TPP-PEG2k-TOS), and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), and used them to encapsulate combrestatinA4 (CA4) to prepare traceable pH/ROS dual-responsive multifunctional nanoparticles (TLDCAG NPs) with endogenous ROS burst and spatiotemporally controlled multiple drug release ability. Firstly, TLDCAG NPs were accumulated in the tumor cell microenvironment via an enhanced permeability and retention (EPR) effect. Secondly, CA4 was released and specifically destroyed angiogenesis to facilitate the interaction between the tumor and the remaining TLDCG NPs. After accumulating in tumor cells, the TLDCG NPs could be destroyed under acidic conditions to quickly release doxorubicin (DOX), TPP-PEG2k-LND, and TPP-PEG2k-TOS. Thirdly, TPP-PEG2k-LND and TPP-PEG2k-TOS quickly targeted mitochondria, induced endogenous ROS bursts, reduced the mitochondrial membrane potential, and induced tumor cell apoptosis. Endogenous ROS can not only be used as a therapeutic reagent for CDT, but also can cut off the thioketal bond in PEG2k-S-S-CPT-ROS and release camptothecin (CPT). Finally, TLDCAG NPs were traced by magnetic resonance imaging (MRI). Furthermore, in vitro and vivo results indicate that the TLDCAG NPs have vigorous antitumor activity and negligible systemic toxicity. Therefore, the TLDCAG NPs provide an efficient strategy for enhancing antitumor efficacy.

Graphical abstract: Endogenous reactive oxygen species burst induced and spatiotemporally controlled multiple drug release by traceable nanoparticles for enhancing antitumor efficacy

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2021
Accepted
24 May 2021
First published
04 Jun 2021

Biomater. Sci., 2021,9, 4968-4983

Endogenous reactive oxygen species burst induced and spatiotemporally controlled multiple drug release by traceable nanoparticles for enhancing antitumor efficacy

N. Wang, C. Liu, W. Yao, H. Zhou, S. Yu, H. Chen and W. Qiao, Biomater. Sci., 2021, 9, 4968 DOI: 10.1039/D1BM00668A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements