The controlled growth of conjugated polymer-quantum dot nanocomposites via a unimolecular templating strategy†
Abstract
Size and surface functionality are critically important for organic–inorganic hybrid semiconductive nanocomposites in terms of stable photoelectrochemical properties and superior device performance. The ability of reversible deactivation radical polymerization to control the chain length and dispersity of polymers is herein extended to the tailor-made synthesis of nanocomposites with tunable size, distribution, and surface coating. This is exemplified by the fabrication of cadmium selenide (CdSe) quantum dots (QDs) with uniform sizes from 2 to 10 nm that are intimately coated with poly(3-hexylthiophene) (i.e., CdSe@P3HT).