Photo-induced energy transfer relay of N-heterocyclic carbene catalysis: an asymmetric α-fluorination/isomerization cascade†
Abstract
The geometric configuration of olefin products is often driven by thermodynamic control in synthesis. Methods enabling switching of cis/trans selectivity are rare. Recently, photosensitized approaches have emerged as a powerful tool for accomplishing this task. In this report, we report an in situ isomerization of an N-heterocyclic carbene (NHC)-bound intermediate by a photo-induced energy transfer process that leads to selective access of chiral allylic fluorides with a cis-olefin geometry. In the absence of a photocatalyst or light, the reaction proceeds smoothly to give (E)-olefin products, while the (Z)-isomer can be obtained under photosensitizing conditions. Preliminary mechanistic experiments suggest that an energy transfer process might be operative.