In crystallo organometallic chemistry
Abstract
X-ray crystallography is an invaluable tool in design and development of organometallic catalysis, but application typically requires species to display sufficiently high solution concentrations and lifetimes for single crystalline samples to be obtained. In crystallo organometallic chemistry relies on chemical reactions that proceed within the single-crystal environment to access crystalline samples of reactive organometallic fragments that are unavailable by alternate means. This highlight describes approaches to in crystallo organometallic chemistry including (a) solid–gas reactions between transition metal complexes in molecular crystals and diffusing small molecules, (b) reactions of organometallic complexes within the extended lattices of metal–organic frameworks (MOFs), and (c) intracrystalline photochemical transformations to generate reactive organometallic fragments. Application of these methods has enabled characterization of catalytically important transient species, including σ-alkane adducts of transition metals, metal alkyl intermediates implicated in metal-catalyzed carbonylations, and reactive M–L multiply bonded species involved in C–H functionalization chemistry. Opportunities and challenges for in crystallo organometallic chemistry are discussed.