Thermally activated delayed fluorescence materials as organic photosensitizers
Abstract
Photosensitizer molecules play a crucial role in materials and life sciences. Efforts to improve their performance and reduce the associated costs are therefore vital for advancing environmentally friendly light-driven technologies. In this Feature Article, we describe the use of photosensitizers that make use of thermally activated delayed fluorescence (TADF), their benefits compared to conventional fluorescent and phosphorescent sensitizers, and the efforts of our group and others to develop emitters with application-tailored properties. The key feature is the diversity of accessible excited state pathways, which may be tuned by molecular and supramolecular approaches to suit a particular problem. This unique property has allowed TADF emitters to become competitive for applications including TADF-sensitized fluorescence in light emitting diodes and chemical sensing, organic long persistent luminescence, photodynamic therapy, and non-coherent photon upconversion.