Issue 1, 2021

Infrared action spectroscopy of nitrous oxide on cationic gold and cobalt clusters

Abstract

Understanding the catalytic decomposition of nitrous oxide on finely divided transition metals is an important environmental issue. In this study, we present the results of a combined infrared action spectroscopy and quantum chemical investigation of molecular N2O binding to isolated Aun+ (n ≤ 7) and Con+ (n ≤ 5) clusters. Infrared multiple-photon dissociation spectra have been recorded in the regions of both the N[double bond, length as m-dash]O (1000–1400 cm−1) and N[double bond, length as m-dash]N (2100–2450 cm−1) stretching modes of nitrous oxide. In the case of Aun+ clusters only the ground electronic state plays a role, while the involvement of energetically low-lying excited states in binding to the Con+ clusters cannot be ruled out. There is a clear preference for N-binding to clusters of both metals but some O-bound isomers are observed in the case of smaller Con(N2O)+ clusters.

Graphical abstract: Infrared action spectroscopy of nitrous oxide on cationic gold and cobalt clusters

Supplementary files

Article information

Article type
Paper
Submitted
02 Oct 2020
Accepted
04 Dec 2020
First published
08 Dec 2020
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2021,23, 329-338

Infrared action spectroscopy of nitrous oxide on cationic gold and cobalt clusters

E. M. Cunningham, A. E. Green, G. Meizyte, A. S. Gentleman, P. W. Beardsmore, S. Schaller, K. M. Pollow, K. Saroukh, M. Förstel, O. Dopfer, W. Schöllkopf, A. Fielicke and S. R. Mackenzie, Phys. Chem. Chem. Phys., 2021, 23, 329 DOI: 10.1039/D0CP05195K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements