Microscopic structural features of water in aqueous–reline mixtures of varying compositions†
Abstract
Reline, a mixture of urea and choline chloride in a 2 : 1 molar ratio, is one of the most frequently used deep eutectic solvents. Pure reline and its aqueous solution have large scale industrial use. Owing to the presence of active hydrogen bond formation sites, urea and choline cations can disrupt the hydrogen-bonded network in water. However, a quantitative understanding of the microscopic structural features of water in the presence of reline is still lacking. We carry out extensive all-atom molecular dynamics simulations to elucidate the effect of the gradual addition of co-solvents on the microscopic arrangements of water molecules. We consider four aqueous solutions of reline, between 26.3 and 91.4 wt%. A disruption of the local hydrogen-bonded structure in water is observed upon inclusion of urea and choline chloride. The extent of deviation of the water structure from tetrahedrality is quantified using the tetrahedral order parameter (qtet). Our analyses show a monotonic increase in the structural disorder as the co-solvents are added. Increase in the qtet values are observed when highly electro-negative hetero-atoms like nitrogen, oxygen of urea and choline cations are counted as partners of the central water molecules. Further insights are drawn from the characterization of the hydrogen-bonded network in water and we observe the gradual rupturing of water–water hydrogen bonds and their subsequent replacement by the water–urea hydrogen bonds. A negligible contribution from the hydrogen bonds between water and bulky choline cations has also been found. Considering all the constituents as the hydrogen bond partners we calculate the possibility of a successful hydrogen bond formation with a central water molecule. This gives a clear picture of the underlying mechanism of water replacement by urea.