Issue 9, 2021

Interaction strength of osmolytes with the anion of a salt-bridge determines its stability

Abstract

In order to understand the role of osmolytes in regulating physicochemical behavior of proteins, we investigated the influence of protein destabilizing (urea and guanidinium chloride) and stabilizing osmolytes (TMAO, glycerol, and betaine) on a model salt-bridge (SB) formed between structural analogues of arginine and glutamate/aspartate sidechains in a solvent continuum using first-principles quantum chemical calculations based on DFT and MP2 methods. The binding strength of the osmolyte with the SB is found to be in the order of betaine > TMAO > Gdm+ > glycerol > urea. The osmolytes (TMAO and betaine) that preferentially bind to the SB cation have a marginal influence on SB stability. Also, pure π–π stacking interaction between Gdm+ and the SB cation plays an insignificant role in destabilizing the SB. In fact, the interaction strength of osmolytes with the SB anion mainly determines the stability of SB. For instance, a competition between Gdm+ and the SB cation to bind with the SB anion is responsible for instability and subsequent dissociation of the SB. The competition provided by other osmolytes is too weak to break the SB. Exploiting this information, we designed three structural derivatives of Gdm+, all having a stronger interaction with SB anion, and thereby show a stronger SB dissociation potential. Furthermore, we find an excellent linear anti-correlation between SB interaction energy and the energy of interaction between osmolyte and the SB anion, which suggests that by knowing only the strength of osmolyte⋯acetate interaction, one can predict the influence of osmolytes on the salt-bridge instability. This information is useful in fine-tuning the SB dissociation power of Gdm+, which has a practical significance in obtaining the mechanistic insight into the influence of GdmCl on protein stability. Our results also provide a basis for understanding the chemistry of other ion-pairs formed between a cationic hydrogen donor and an anionic acceptor.

Graphical abstract: Interaction strength of osmolytes with the anion of a salt-bridge determines its stability

Supplementary files

Article information

Article type
Paper
Submitted
13 Oct 2020
Accepted
11 Feb 2021
First published
11 Feb 2021

Phys. Chem. Chem. Phys., 2021,23, 5527-5539

Interaction strength of osmolytes with the anion of a salt-bridge determines its stability

M. K. Tiwari and R. K. Murarka, Phys. Chem. Chem. Phys., 2021, 23, 5527 DOI: 10.1039/D0CP05378C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements