Issue 4, 2021

Geometric and electronic properties of AulPtm (l + m ≤ 10) clusters: a first-principles study

Abstract

The structural evolutions and electronic properties of AulPtm (l + m ≤ 10) clusters are investigated by using the first-principles methods. We use the inverse design of materials using the multi-objective differential evolution (IM2ODE) package to globally search the equilibrium structures and investigate the evolving trend from a two-dimensional structure to a three-dimensional structure on horizontal extension and vertical extension for AulPtm (l + m ≤ 10) clusters. The three-dimensional stable geometry of Au8Pt and Au8Pt2 is discovered for the first time in our work. We also notice that the equilibrium structures of AulPtm (l + m = 10 and l ≤ 8) tend to form a tetrahedral geometry and can be obtained by replacing the Au atom in the most stable structure of Aul+1Ptm−1 with the Pt atom, where Pt atoms assemble together and occupy the center of clusters and Au atoms prefer to lie on the vertex or edge position. The average binding energy (Eb) is mostly decided by Pt–Pt bond numbers, namely the numbers of Pt atoms, followed by Au–Pt bond numbers. The second-order energy difference (Δ2Ev and Δ2Eh) and the nearest-neighbor energy difference (Δ4Enn) show that Au6Pt, Au4Pt2, Au3Pt3, Au2Pt4 and AuPt7 clusters exhibit high relative physical stability, so we suggest that these clusters could be defined as the magic number clusters for AulPtm (l + m ≤ 10) clusters. The HOMO–LUMO energy gap (Eg), adiabatic ionization potential (AIP) and the adiabatic electron affinity (AEA) are also investigated to elaborate the relative electronic stability of all the clusters.

Graphical abstract: Geometric and electronic properties of AulPtm (l + m ≤ 10) clusters: a first-principles study

Article information

Article type
Paper
Submitted
29 Oct 2020
Accepted
28 Dec 2020
First published
06 Jan 2021

Phys. Chem. Chem. Phys., 2021,23, 3050-3062

Geometric and electronic properties of AulPtm (l + m ≤ 10) clusters: a first-principles study

W. Xie, H. Zhu and S. Wei, Phys. Chem. Chem. Phys., 2021, 23, 3050 DOI: 10.1039/D0CP05642A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements