Issue 8, 2021

Controlling the off-center positions of anions through thermodynamics and kinetics in flexible perovskite-like materials

Abstract

Due to the network flexibility of their BX3 sub-lattice, a manifold of polymorphs with potential multiferroic applications can be found in perovskite-like ABX3 materials under different pressure and temperature conditions. The potential energy surface of these compounds usually presents equivalent off-center positions of anions connected by low energetic barriers. This feature facilitates a competition between the thermodynamic and kinetic control of the transitions from low to high symmetry structures, and explains the relationship between the rich polymorphism and network flexibility. In the rhombohedral phase of iron trifluoride, our first-principles electronic structure and phonon calculations reveal the factors that determine which of the two scenarios dominates the transition. At the experimentally reported rhombohedral–cubic transition temperature, the calculated fluorine displacements are fast enough to overcome forward and backward a barrier of less than 30 kJ mol−1, leading to an average structure with cubic symmetry. In addition, lattice strain effects observed in epitaxial growth and nanocrystallite experiments involving BX3 compounds are successfully mimicked by computing the phase stability of FeF3 under negative pressures. We predict a transition pressure at −1.8 GPa with a relative volume change around 5%, consistent with a first-order transition from the rhombohedral to the cubic structure. Overall, our study illustrates how, by strain tuning, either a thermodynamic or a kinetic pathway can be selected for this transformation.

Graphical abstract: Controlling the off-center positions of anions through thermodynamics and kinetics in flexible perovskite-like materials

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2020
Accepted
16 Dec 2020
First published
16 Dec 2020

Phys. Chem. Chem. Phys., 2021,23, 4491-4499

Controlling the off-center positions of anions through thermodynamics and kinetics in flexible perovskite-like materials

A. Lobato, M. Recio-Poo, A. Otero-de-la-Roza, M. A. Salvadó and J. M. Recio, Phys. Chem. Chem. Phys., 2021, 23, 4491 DOI: 10.1039/D0CP05711H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements